Automatic Parameter Learning for Multiple Local Network Alignment
نویسندگان
چکیده
منابع مشابه
Automatic Parameter Learning for Multiple Local Network Alignment JASON
We developed Græmlin 2.0, a new multiple network aligner with (1) a new multi-stage approach to local network alignment; (2) a novel scoring function that can use arbitrary features of a multiple network alignment, such as protein deletions, protein duplications, protein mutations, and interaction losses; (3) a parameter learning algorithm that uses a training set of known network alignments to...
متن کاملAutomatic Parameter Learning for Multiple Local Network Alignment
We developed Graemlin 2.0, a new multiple network aligner with (1) a new multi-stage approach to local network alignment; (2) a novel scoring function that can use arbitrary features of a multiple network alignment, such as protein deletions, protein duplications, protein mutations, and interaction losses; (3) a parameter learning algorithm that uses a training set of known network alignments t...
متن کاملAutomatic Parameter Learning for Multiple Network Alignment
We developed Græmlin 2.0, a new multiple network aligner with (1) a novel scoring function that can use arbitrary features of a multiple network alignment, such as protein deletions, protein duplications, protein mutations, and interaction losses; (2) a parameter learning algorithm that uses a training set of known network alignments to learn parameters for our scoring function and thereby adap...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملneural network-based learning kernel for automatic segmentation of multiple sclerosis lesions on magnetic resonance images
background: multiple sclerosis (ms) is a degenerative disease of central nervous system. ms patients have some dead tissues in their brains called ms lesions. mri is an imaging technique sensitive to soft tissues such as brain that shows ms lesions as hyper-intense or hypo-intense signals. since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Biology
سال: 2009
ISSN: 1066-5277,1557-8666
DOI: 10.1089/cmb.2009.0099